Document Navigation
Resources || Comparison || References
Resources (Go to Top)
Plant Genome Databases
MaizeGDB (
Medicago truncatula - A model for legume research (
SoyBase and the Soybean Breeder's Toolbox (
Rice genome database (
GDR|Genome Database for Rosaceae (
Cucumber genome database (
AppleGFDB (
Welcome to the Cacao Genome Project | Cacao Genome Database (
Brassica oleracea Genomics Database (
BRAD-Brassica Database (
Sesamum indicum Genome Database (
The Banana Genome Hub (
Resource Databases
PlantGDB (
Phytozome (
Entrez Genome Database (
DOGS-Database Of Genome Sizes (
PGDD - Plant Genome Duplication Database (
GRAMENE-Plant Genomic Resources (
SGN - Sol Genomics Network (
Welcome to the Genome Database for Rosaceae | GDR (

Comparison of PTGBase and existed tandem-relevant databases (Go to Top)

Database  Contents Species involved Address Authors
STRBase NIST has complied and maintained a Short Tandem Repeat DNA Internet Database since 1997. This database is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. STRBase collected the abundant literature on this subject to facilitate on-going efforts in DNA typing. Homo sapiens (
Ruitberg et al. 2001
Tandem repeats database for bacterial genomes This database ( [] ) collected tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. The author illustrated the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis.  Yersinia pestis and Bacillus anthracis ( Le Fleche et al. 2001
YHRD YHRD represents 9-locus Y-STR haplotypes for 1705 African-Americans, European-Americans and Hispanics as of October 2001 and supply the U.S. forensic DNA community with a valuable resource for frequencies of complete or incomplete 9-locus Y-STR haplotypes, as well as information about typing protocols and population genetic analyses. Homo sapiens (( Kayser et al. 2002
TRbase TRbase collected tandem repeats to gene locations and disease genes of the human genome and also identified both perfect and imperfect repeats of 1–2000 bp unit lengths. The utility of this database has been illustrated by analysing these repeats for their distribution and frequencies across chromosomes and genomic locations and between protein-coding and non-coding regions. The applicability of this database to identify diseases associated with previously uncharacterized tandem repeats is demonstrated. Homo sapiens ( Boby et al. 2005
TRDB TRDB is a public repository of information on tandem repeats in genomic DNA. It contains a variety of tools for repeat analysis, including the Tandem Repeats Finder program, query and filtering capabilities, repeat clustering, polymorphism prediction, PCR primer selection, data visualization and data download in a variety of formats. Homo sapiens ( Gelfand et al. 2007
TassDB TassDB have stored extensive data about alternative splice events at GYNGYN donors and NAGNAG acceptors. These splice events are of subtle nature since they mostly result in the insertion/deletion of a single amino acid or the substitution of one amino acid by two others. TassDB have collected 114,554 tandem splice sites of eight species, 5,209 of which have EST/mRNA evidence for alternative splicing. In addition, human SNPs that affect NAGNAG acceptors are annotated. Homo sapiens, Canis familiaris, Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio, Drosophila melanogaster and Caenorhabditis elegans ( Hiller et al. 2007
VNTRDB VNTRDB is a resource for helping in the discovery of putatively polymorphic tandem repeat loci and aids with assay design by providing the flanking sequences that can be used in subsequent PCR primer design. Each TR locus was obtained by comparing the sequences between different sets of bacterial genera, species or strains. Through comparison, TRs which are unique to a genus can also be identified. Moreover, a visualization tool is provided to ensure that the copy number and locus length of repeats are correct. Microorganisms ( Chang et al. 2007
PTGBase PTGBase is a public database to collect plant genes generated by tandem duplication mechanism in the process of plant evolution. So far, PTGBase mainly focus on plants with available whole genome sequences especially for assembled pseudomolecules with ordered gene models. In this database, we have collected 39 plant species arrayed in 54,130 tandem repeat gene clusters containing 129,652 genes. Plants ( Yu et al. 2014
References (Go to Top)

1. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408(6814) :796-815. [PubMed]

2. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296(5565):92-100. [PubMed]

3. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313(5793):1596-1604. [PubMed]

4. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L et al: The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007, 318(5848):245-250. [PubMed]

5. Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449(7161): 463-467. [PubMed]

6. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP et al: The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456(7219):239-244. [PubMed]

7. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL et al: The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 2008, 452(7190):991-996. [PubMed]

8. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y et al: The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008, 319(5859):64-69. [PubMed]

9. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K et al: Genome structure of the legume, Lotus japonicus. DNA Res 2008, 15(4):227-239. [PubMed]

10. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P et al: The genome of the cucumber, Cucumis sativus L. Nat Genet 2009, 41(12):1275-1281. [PubMed]

11. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al: The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457(7229):551-556. [PubMed]

12. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al: The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326(5956):1112-1115. [PubMed]

13. Vogel J P, Garvin D F, Mockler T C, et al: Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature, 2010, 463(7282): 763-768. [PubMed]

14. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J et al: The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 2010, 22(9):2943-2955. [PubMed]

15. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G et al: Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 2010, 28(9):951-956. [PubMed]

16. Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK et al: Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 2010, 329(5988):223-226. [PubMed]

17. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463(7278):178-183. [PubMed]

18. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al: The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 2010, 42(10):833-839. [PubMed]

19. Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN et al: The genome of Theobroma cacao. Nat Genet 2011, 43(2):101-108. [PubMed]

20. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA et al: The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 2011, 332(6032):960-963. [PubMed]

21. Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ et al: The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 2011, 43(9):913-918. [PubMed]

22. Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB et al: Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci U S A 2011, 108(11):4352-4357. [PubMed]

23. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H et al: The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 2011, 43(5):476-481. [PubMed]

24. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al: The genome of woodland strawberry (Fragaria vesca). Nat Genet 2011, 43(2):109-116. [PubMed]

25. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F et al: The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 2011, 43(10):1035-1039. [PubMed]

26. Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J et al: Genome sequence and analysis of the tuber crop potato. Nature 2011, 475(7355):189-195. [PubMed]

27. Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H et al: The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480(7378):520-524. [PubMed]

28. Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485(7400):635-641. [PubMed]

29. D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M et al: The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488(7410):213-217. [PubMed]

30. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM et al: Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 2012, 30(1):83-89. [PubMed]

31. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S et al: The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 2012, 44(10):1098-1103. [PubMed]

32. Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R et al: The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 2012, 72(3):461-473. [PubMed]

33. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W et al: Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 2012, 30(6):549-554. [PubMed]

34. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G et al: The genome of Prunus mume. Nat Commun 2012, 3:1318. [PubMed]

35. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z et al: The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 2013, 45(1):51-58. [PubMed]

36. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar'an B et al: Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 2013, 31(3):240-246. [PubMed]

37. Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP et al: The draft genome of sweet orange (Citrus sinensis). Nat Genet 2013, 45(1):59-66. [PubMed]

38. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S et al: The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 2014, 5:3930. [PubMed]

39. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W et al: Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 2014, 15(2):R39. [PubMed]

This database is currently maintained by Jingyin Yu.

The Key Laboratory of Oil Crops Biology and Genetic Breeding, the Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan 430062, China